对核能的利用主要表现在哪些方面(核能的应用,以及未来的用途)

作者:梦兮      发布时间:2021-08-03      浏览量:16275
对核能的利用主要表现在哪些方面1、核裂变,如:原子弹。2、核聚变,如:氢弹。3、核衰变,自然的慢得多的裂变形式。如:原子电池。1。制造:原子弹、氢弹等核武器。(破坏性利用。)2。建立:核反应堆,用于发电。(和平利用。)大概就是这么个意思吧。

对核能的利用主要表现在哪些方面


1、核裂变,如:原子弹。
2、核聚变,如:氢弹。
3、核衰变,自然的慢得多的裂变形式。如:原子电池。

1。制造:原子弹、氢弹等核武器。(破坏性利用。)2。建立:核反应堆,用于发电。(和平利用。)大概就是这么个意思吧。。
再看看别人怎么说的。

好处:1.效率高,少量能源就能产生巨大电能,节约资源。2.大大减少有害气体、温室气体的排放,保护环境,减少雾霾。坏处:对周围居民的生命是潜在威胁。


核能的应用,以及未来的用途


核能发电  利用核反应堆中核裂变所释放出的热能进行发电的方式。它与火力发电极其相似。只是以核反应堆及蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。
 优点:
  1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
  2.核能发电不会产生加重地球温室效应的二氧化碳。
  3.核能发电所使用的铀燃料,除了发电外,没有其他的用途。
  4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
  5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。
  缺点:
  1.核能电厂会产生高低阶放射性废料,或者是使用过之核燃料,虽然所占体积不大,但因具有放射线,故必须慎重处理,且需面对相当大的政治困扰。
  2.核能发电厂热效率较低,因而比一般化石燃料电厂排放更多废热到环境裏,故核能电厂的热污染较严重。
  3.核能电厂投资成本太大,电力公司的财务风险较高。
  4.核能电厂较不适宜做尖峰、离峰之随载运转核能为微型装置提供动力  目前,世界各地的研究人员正在开发宽度小于人的头发的微型装置,用于从生化传感器到医学植入体的各种用途。但这方面存在着一个障碍:目前还没人能拿出一种与这么小的微型机械装置相匹配的能源。
  任何一个随身携带过使用五磅重电池、而自重仅一磅的便携式电脑的人都该明白这句话的意思。为了实现这些装置的全部潜在用途,需要有这样一种能源,它既能提供强大的动力,又要小得足以安装在同一块芯片上。
  现在,威斯康星大学的一组工程师相信他们也许找到了正确的方法。他们已经开始了一个利用核能来提供能量的项目,但这些发电机将与向家庭和工厂提供电力的带穹顶的核电厂完全不同。
  这些微型装置的能源不是靠转动的涡轮机来发电,而是利用微量的放射性物质,通过它们的衰变来产生电能。以前也有过这种做法,但规模要大得多。人们曾用这种方法给从心脏起搏器到探索太阳系外层黑暗空间的航天器等各种装置提供能源。
 核能是人类最具希望的未来能源。目前人们开发核能的途径有两条:一是重元素的裂变,如铀的裂变;二是轻元素的聚变,如氘、氚、锂等。重元素的裂变技术,己得到实际性的应用;而轻元素聚变技术,也正在积极研制之中。可不论是重元素铀,还是轻元素氘、氚,在海洋中都有相当巨大的储藏量。
  铀是高能量的核燃料,1千克铀可供利用的能量相当于燃烧2250吨优质煤。然而陆地上铀的储藏量并不丰富,且分布极不均匀。只有少数国家拥有有限的铀矿,全世界较适于开采的只有100万吨,加上低品位铀矿及其副产铀化物,总量也不超过500万吨,按目前的消耗量,只够开采几十年。而在巨大的海水水体中,却含有丰富的铀矿资源。据估计,海水中溶解的铀的数量可达45亿吨,相当于陆地总储量的几千倍。如果能将海水中的铀全部提取出来,所含的裂变能可保证人类几万年的能源需要。不过,海水中含铀的浓度很低,1000吨海水只含有3克铀。只有先把铀从海水中提取出来,才能应用。而要从海水中提取铀,从技术上讲是件十分困难的事情,需要处理大量海水,技术工艺十分复杂。但是,人们已经试验了很多种海水提铀的办法,如吸附法、共沉法、气泡分离法以及藻类生物浓缩法等。

中文名称: 核能 英文名称: nuclear energy 其他名称: 原子能 定义1: 由于原子核内部结构发生变化而释放出的能量。 所属学科: 电力(一级学科);核电(二级学科) 定义2: 核反应或核跃迁时释放的能量。例如重核裂变、轻核聚变时释放的巨大能量。 所属学科: 资源科技(一级学科);能源资源学(二级学科) 核能是可持续发展的能源

  据估计,在世界上核裂变的主要燃料铀和钍的储量分别约为490万吨和275万吨。这些裂变燃料足可以用到聚变能时代。轻核聚变的燃料是氘和锂,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即1升海水约等于300升汽油,地球上海水中有40多万亿吨氘,足够人类使用百亿年。地球上的锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。况且以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。

  1. 核工业的主要业务范围

  核工业的主要业务范围包括:铀矿勘探、铀矿开采与铀的提取、燃料元件制造、铀同位素分离、反应堆发电、乏燃料后处理、同位素应用以及与核工业相关的建筑安装、仪器仪表、设备制造与加工、安全防护及环境保护。

  2. 核燃料循环及其组成

  核燃料循环是指核燃料的获得、使用、处理、回收利用的全过程。它是核工业体系中的重要组成部分。核燃料循环通常分为前端和后端两部分,前端包括铀矿勘探、铀矿开采、矿石加工(包括选矿、浸出、提取和沉淀等工序)、精制、转化、浓缩、元件制造等;后端包括对反应堆辐照以后的乏燃料元件进行铀钚分离的后处理以及对放射性废物进行处理、贮存和处置。

  3. 铀矿地质勘探

  铀是核工业最基本的原料。铀矿地质勘探的目的是查明和研究铀矿床形成的地质条件,总结出铀矿床在时间上和空间上的分布规律,并用此规律指导普查勘探,探明地下的铀矿资源。普查勘探工作的程序为区域地质调查、普查和详查、揭露评价、勘探等,同时还要求工作人员进行地形测量、地质填图、原始资料编录等-系列的基础地质工作。

  分散在地壳中的铀元素在各种地质作用下不断集中,最终形成了铀矿物的堆积物,即铀矿床。了解铀矿床的形成过程,对铀矿普查勘探具有十分重要的指导意义。并不是所有的铀矿床都有开采、进行工业利用价值的。据统计,在已发现的170多种铀矿床及含铀矿物中,具有实际开采价值只有14~18影响铀矿床工业的两个主要因素是矿石品位和矿床储量。此外,评价的因素还有矿石技术加工性能、矿床开采条件,有用元素综合利用的可能性和交通运输条件等。

  4. 铀矿开采

  生产铀的第一步是铀矿开采。其任务是从地下矿床中开采出工业品位的铀矿石,或将铀经化学溶浸,生产出液体铀化合物。由于铀矿有放射性,所以铀矿开采其特殊方法。常用的主要有三种:露天开采、地下开采和原地浸出。 露天开采一般用于埋藏较浅的矿体,方法剥离表土和覆盖岩石,使矿石出露,然后进行采矿。 地下开采一般用于埋藏较深的矿体,此种方法的工艺过程比较复杂。与以上两种法方法相比,原地浸出采铀具有生产成本低,劳动强度小等优点,但其应用有一定的局限性,仅适用于具有一定地质、水文地质条件的矿床 。其方法是通过地表钻孔将化学反应剂注入矿带,通过化学反应选择性地溶解矿石中的有用成分--铀,并将浸出液提取出地表,而不使矿石绕围岩产生位移。

  

  

核能发电机

5. 铀矿石的加工

  铀矿石加工的目的是将开采出来的具有工业品位或经放射性选矿的矿加工富集,使其成为含铀较高的中间产品,即通常所说的铀化学浓缩物。将此种铀化学浓缩物精制,进一步加工成易于氢氟化的铀氧化物作为下一步工序的原料。

  铀矿石加工的主要步骤包括:矿石品位、磨矿、矿石浸出,母液分离、溶液纯化、沉淀等工序。

  为了便于浸出,矿石被开采出来后,必须将其破碎磨细,使铀矿物充分暴露。然后采用一定的工艺,借助一些化学试剂(即浸出剂)或其它手段将矿石中有价值的组分选择性地溶解出来。浸出方法有两种:酸法和碱法。由于浸出液中铀含量低,而且杂质种类多,含量高,所以必须将杂质去除才能确保铀的纯度。实现这一过程,可以选择以下两种方法:离子交换法(又称吸附法)和溶剂萃取法。水冶生产的最后一道工序是将沉淀物洗涤、压滤、干燥,然后得到水冶产品铀化学浓缩物,又称黄饼。

  6. 铀的浓缩

  为了提高铀-235浓度所进行的铀同位素的分离处理称为浓缩。通过浓缩可以为某些反应堆提供铀-235浓度符合要求的铀燃料,现今所采用的浓缩方法有气体扩散法、分离法、激光法、喷嘴法、电磁分离法、化学分离法等,其中气体扩散法和离心分离法是现代工业上普遍采用的浓缩方法。浓缩处理是以六氟化铀形式进行的。

  7. 核燃料元件

  经过提纯或浓缩的铀,还不能直接用作核燃料。必须经过化学,物理、机械加工等处理后,制成各种不同形状和品质的元件,才能供反应堆作为燃料来使用。 核燃料元件种类繁多,按组分特征来分,可分为金属型、陶瓷型和弥散型;按几何形状来分,有柱状、棒状、环状、板状、条状、球状、棱柱状元件;按反应堆来分,可以分为试验堆元件,生产堆元件,动力堆元件(包括核电站用的核燃料组件)。

  核燃料元件一般都是由芯体和包壳组成的。由于它长期在强辐射、高温、高流速甚至高压的环境下工作,所以对芯片的综合性能、包壳材料的结构和使用寿命都有很高的要求。可见,核燃料元件制造是一种高科技含量的技术。

  8. 乏燃料的后处理

  经过辐照的燃料元件,从堆内卸出时总是含有一定量未分裂和新生的裂变燃料。乏燃料的后处理的目的就是回收这些裂变燃料如铀-235,铀-233和钚,利用它们再制造新的燃料元件或用做核武器装料。此外,回收转换原料(铀-238,铯-137,锶-90),提取处理所生成的超铀元素以及可用作射线源的某些放射性裂变产物(如铯-137,锶-90等),都有很大的科学和经济价值。但此项工序放射性强,毒性大,容易发生临界事故,所以,在进行乏燃料的后处理时一定要加强安全防护措施。

  后处理工艺一般分为四个步骤:冷却与首端处理、化学分离、通过化学转化还原出铀和钚、通过净化分别制成金属铀(或二氧化铀)及钚(或二氧化钚)。冷却与首端处理是冷却将乏燃料组件解体,即脱除元件包壳,溶解燃料芯块。化学分离(即净化与去污过程)是将裂变产物从u-pu中清除出去,然后用溶剂淬取法将铀-钚分离并分别以硝酸铀酰和硝酸钚溶液形式提取出来。

  9. 三废处理与处置

  在核工业生产和科研过程中,会产生一些不同程度放射性的固态、液态和气态的废物,简称为三废。在这些废物中,放射性物质的含量虽然很低,危害却很大。普通的外界条件(如物理、化学、生物方法)对放射性物质基本上不会起作用。因此在放射性废物处理过程中,除了靠放射性物质的衰变使其放射性衰减外,就只能采取多级净化、去污、压缩减容、焚烧、固化等措施将放射性物质从废物中分离出来,使浓集放射性物质的废物体积尽量减小,并改变其存在的状态,以达安全处置的目的。这个过程称为三废处理与处置。

制造成武器 还可以作为潜艇之类的动力 核能发电


我国目前核能的利用情况


中国大陆的核电起步较晚,80年代才动工兴建核电站。中国自行设计建造的30万千瓦(电)秦山核电站在1991年底投入运行。大亚湾核电站于1987年开工,于1994年全部并网发电。 从核电发展总趋势来看,中国核电发展的技术路线和战略路线早已明确并正在执行,当前发展压水堆,中期发展快中子堆,远期发展聚变堆。具体地说就是,近期发展热中子反应堆核电站;为了充分利用铀资源,采用铀钚循环的技术路线,中期发展快中子增殖反应堆核电站;远期发展聚变堆核电站,从而基本上“永远”解决能源需求的矛盾。

907x7,这种论文自己写,别山寨
既然你想“核能利用调查”,个人以为(在中国):希望很大,挑战很大,如履薄冰,势在必行!
(全世界):等到核能技术大突破,才有曙光


那位行家说说我国当今核能的利用现状


我国核能现在装机容量不足10000MW,主要是大亚湾,岭澳,秦山一二三期,田湾已经发电,现在大力上马核电,项目非常多,广东台山,浙江三门,方家山,福建福清,宁德,山东等都已经开工,还有桃花江等一批正在密切建设但没有开工的。预计到2020年,我国核电能达到40000MW,比例可能超过6总之对中国来说核能发展很快,目前中国是世界核能在建最多的国家。但是比例跟法国,美国等发达国家比起来,还差很远。

今核时代——世界核能发展和中国核能利用状况
一、 世界核能发展的动向
已经过去的二十世纪是一个科技成果丰硕的世纪,其伟大科技成果之一,是人们打开了核能利用的大门。1905年,爱因斯坦在其著名的相对论中列出了质量和能量相互转换的公式:
能量=(质量)×(光速)2
这一公式表明,少量的质量能转换为十分巨大的能量,揭示了核能来源的物理规律。
1938年,科学家们发现了铀-235的裂变现象:铀原子核裂变的同时,释放出巨大的能量,这个能量来源于原子核内核子的结合能,它恰好相等于核裂变时的质量亏损。这一发现,使核能的利用走向现实。
核能的和平利用始于上世纪五十年代初期。1951年美国利用一座军用反应堆的余热试验发电,电功率200kW。1954年,苏联建成世界上第一座核电站,电功率5000kW。之后,英国和法国相继建成一批军民两用的气冷堆核电站。1957年,美国建成了电功率9万kW的世界上第一座压水堆核电站。那时,各有核国家在抓紧核武器竞赛的同时也竞相建造核电站。至七十年代进入了发展核电站的高潮,那时核电站增长的速度远高于火电和水电。虽然自上世纪八十年代以来核电发展建设的速度相对缓慢下来了,但由于核电站有着不可取代的优越性,法国、日本、韩国等仍坚持了以发展核电为主的方针,并取得了卓越的成效。我国发展核电的决心也坚定不移,自行设计建造成功的秦山核电站于1991年并网发电,进口的大亚湾核电站也于1993年并网发电。“九五”期间已开工建设的八套核电机组中,有二套已于今年投产发电。
近十多年来,以美国为首的工业发达国家对核电的前景又进行了认真的研究。美国电力研究院根据其研究成果于九十年代发表了《先进轻水反应堆用户要求文件》,认为根据核电已有的经验和技术水平,是能设计出新一代核电机组,使其安全性和经济性都显著提高,是能取得广大公众和用户的充分信任的。之后,欧洲各国电力界也相继提出了《欧洲用户对轻水堆核电站的要求》文件,表达了与美国相同和相似的看法。去年(2001年)4月,美国总统布什在其《能源政策报告》中再次表明了美国政府支持发展核电的决心和信心,指出:发展核电是美国能源政策的重要组成部分。2001年10月在里约日内卢召开的世界能源大会再次肯定了发展核电的必要性和可行性。核电已开始在国际上复苏。
二、 核能在能源中的地位
能源是人类社会的生命线,一个国家开发和利用能源的水平,标志着这个国家的生产力水平、文化水平和人民生活水平。
在十九世纪产业革命之前,人类消耗能源的增长,相当缓慢。产业革命以来,由于经济的发展,能源耗量也迅速增长。近一百年来,世界能耗增长了二十倍。在上世纪五十年代,世界能源年耗量相当于26亿吨标准煤,至八十年代初已超过年耗量100亿吨标准煤。2000年世界能源的年耗量已超过180亿吨标准煤。但是,迄今为止,世界耗能的85来自燃烧煤、石油、天然气等有机燃料。大量燃烧有机燃料所产生的二氧化硫、二氧化碳、氧化亚氮和烟灰等物质,给人们带来深感忧虑的环境影响问题。而且,这些有机物质消耗量的巨大增长,使它们在地球上的储量日益面临枯竭。人类已经面临选择后续替代能源的问题。
自然界中,除有机燃料外,核能、水力、风力、太阳能、地热、潮汐能也都是可资利用的能源。水力是无污染的能源,应充分开发使用,但水力资源终究有限,且受地理条件限制。水力发电量又随季节变化很大,故光*水力满足不了日益增长的能源要求。太阳能、潮汐能、风力、地热等受多种条件限制,只能在一定条件下有限开发,很难大量使用。多种预测资料表明,即使做较乐观的估计,上述这几种能源中每种在能源总耗量中的比例,都很难超过1现在,技术上已较成熟,且能大规模开发使用的,唯有核能。目前,世界上正在运行发电的核电机组已有438座,总电功率为三亿五千多万千瓦,核电占世界总发电量的17法国核电占全国总电量的比例已达76故从人类对能源要求的前景来看,发展核能将是必由之路。这是因为核能有其无法取代的优点。
三、 核能的优点
(一) 核能是地球上储量最丰富的能源,又是高度浓集的能源。一吨金属铀裂变所产生的能量,相当于270万吨标准煤。按照地球上有机燃料的储量和人类耗能的情况来估算,地球上煤的储量大概再过200多年即将耗尽,石油则只够用约40年。人类已经面临如何选择后续能源的问题。地球上已探明的核裂变燃料,即铀矿和钍矿资源,按其所含能量计算,相当于有机燃料的20倍,只要及时开发利用,即有能力替代和后续有机燃料。更进一步说,地球上还存在大量的聚变核燃料氘,能通过聚变反应产生核能。一吨氘聚变产生的能量相当于1129万吨标准煤。氘即重水中的“重氢”,自然界中无论海水或江、湖水都有七千分之一的重水含量,故地球上存在约40万亿吨氘。所以聚变反应堆成功以后,能源真可谓取之不尽,用之不竭,人类将不再为能源问题所困扰了。
(二) 核电是清洁的能源,有利于保护环境。目前世界上大量燃烧有机燃料的后果是相当严重的。燃烧后排出大量的二氧化硫、二氧化碳、氧化亚氮等气体,不仅直接危害人体健康和农作物生长,还导致酸雨和大气层的“温室效应”,破坏生态平衡。比较起来,核电站就没有这些危害。核电站严格按照国际上公认的安全规范和卫生规范设计,对放射性三废,原则上是回收处理储存,不往环境排放。排往环境的只是处理回收后残余的一点尾水尾气,数量甚微。故核电被誉为“清洁的能源”。
(三) 核电在经济上也有优势。发电厂每度电的成本是由建造折旧费、燃料费和运行费这三部分组成,主要是建造折旧费和燃料费。核电厂由于特别考究安全和质量,建造费比火电厂高,一般要高出3050但燃料费则比火电厂低很多,火电厂燃料费约占发电成本的5060而核电厂的燃料费则只占2030总的看起来,一般来说核电厂发电成本与燃煤电厂成本相当,而在需要远距离运煤的地方,则要低1530我国台湾省核电厂成本仅是那里烧石油电厂成本的二分之一。
(四) 核电厂燃料的运输量只及相同容量煤电厂煤炭运输量的十万分之一。以田湾核电厂为例,它两套机组的总容量为200万千瓦,每年只需核燃料48吨。


如何正确利用核能


核能是地球上储量最丰富的能源,又是
高度浓集的能源。1t金属铀裂变所产生的能量,
相当于270万t标准煤。地球上已探明的核裂变
燃料,即铀矿和钍矿资源,按其所含能量计算,
相当于有机燃料的20倍,只要及时开发利用,
便有能力替代和后续有机燃料。更进一步说,地
球上还存在大量的聚变核燃料氘,能通过聚变反
应产生核能。1t氘聚变产生的能量相当于1100
万t标准煤,氘即重水中的“重氢”,普通水中有
七千分之一的重水,故地球上存在约40万亿t
氘。所以聚变反应堆成功以后,能源真可谓取之
不尽,用之不竭,人类将不再为能源问题所困扰。
(2)核电是清洁的能源,有利于保护环境。
目前世界上大量燃烧有机燃料的后果是足堪忧虑
的。燃烧后排出大量的二氧化硫、二氧化碳、氧
化亚氮等气体,不仅直接危害人体健康和农作物
生长,还导致酸雨和大气层的“温室效应”,破
坏生态平衡。比较起来核电站就没有这些危害。
核电站严格按照国际上公认的安全规范和卫生规
范设计,对放射性三废,原则上是回收处理储
存,不往环境排放,排往环境的只是处理回收后
残余的一点尾水尾气,数量甚微,对环境没有实
质性的影响。
(3)核电站坚持安全第一、质量第一的方针,
正确设计、高质量建造和按规范运行的核电站,
其安全是有保证的。
(4)核电的经济性能与火电竞争。电厂每
kw·h的成本是由建造折旧费、燃料费和运行费这
3部分组成的。主要是建造折旧费和燃料费。核
电厂由于考究安全和质量,建造费高于火电厂,
但燃料费低于火电厂,火电厂的燃料费约占发电
成本的4O%~6O%,而核电厂的燃料费则只占
2O%左右。总的算起来,核电厂的发电成本是能
与火电相竞争的。
(5)发展核电有利于减轻交通系统对燃料运
输的负担。1座100万kW 的燃煤火电机组每天
需烧煤约1万t,1年约需300万t,而1座
lOOkW 的核电机组每年仅需核燃料30 t,可见核
燃料运输量仅是煤运输量的十万分之一,大大减
轻交通运输负担。
(6)以核燃料代替煤和石油,有利于资源的
合理利用。煤和石油都是化学工业和纺织工业的
宝贵原料,能用它们创造出多种产品。它们在地
球上的储藏量是很有限的;作为原料,它们要比
仅作为燃料的价值高得多。所以,从合理利用资
源的角度来说,也应逐步以核燃料代替有机燃
料。
总之,核电是一种清洁、安全、技术成熟、
供应能力强、能大规模应用的发电方式;加快我
国核电建设,提高核电在电力供给中的比重,有
助于缓解电力增长与交通运输、环境保护的矛
盾;发展核电对带动高科技产业和装备制造业的
发展,促进经济增长,调整能源结构,保障能源
安全,实施可持续发展战略,都有重要意义。

利用核能发电,做大型机械动力来源,核武器维护国家安全,世界和平等。